VIVA VOCE EXAM OF MS

It is a matter of great honor that the Defense/Viva Voce exam of MS Thesis Batch-I was conducted on February 03, 2010 and seven candidates were declared successful.

BOOK PUBLICATION

A book entitled "Some developments in unequal probability sampling" by Dr. Qaiser Shahbaz (Associate Professor) has been published in "Verlag: Lambert Academic Publishing Company Germany".

A book entitled "Concomitants of order random variables" by Dr. Saman Shahbaz (Assistant Professor) has been published in "Verlag: Lambert Academic Publishing Company Germany".
UPDATES

Dr. G. Q. Abbasi (Professor and Head) & Dr. Qaiser Shehbaz (Associate Professor) attended 9th meeting of BOS for Mathematics held on February 01, 2010 at CIIT Islamabad.

Dr. Muhammad Qaiser Shahbaz (Associate Professor) left for Lancaster University, UK for 15 days training program organized by COMSATS.

The Deputy Chairman Earthquake Reconstruction and Rehabilitation Authority (ERRA) Lieutenant General Sajjad Akram visited COMSATS Institute of Information Technology Lahore on Monday February 15, 2010 and delivered an interactive lecture on "Reconstruction and Rehabilitation Using Technology to Build Back Better" Heads of the Department and honorable faculty members participated in the lecture.

RESEARCH PUBLICATION

A Research Paper entitled "On distribution of bivariate concomitants of records" in the Journal "Applied Mathematics Letters" In Press, Corrected Proof, by Dr. Qasir Shahbaz, Dr. Saman Shahbaz, Mr. Mohammad Mohsin, Dr. M. M Arif Rafiq has been accepted in the Journal "Applied Mathematics Letters".

A research paper entitled "Super edge-magic total labeling of subdivided stars". by Dr. Kashif Ali, Dr. Hani Shaer, Dr. Muhammad Hussain, (Assistant Professors Department of Mathematics) has been accepted in the Journal "Ars Combinatoria".
Some exact and approximate solutions regarding the flow of a Maxwell fluid on a constantly accelerating plate

by

Dr Amir Mehmood

In the following note, dissipation, the power due to the shear stress at the boundary, rate of change of kinetic energy and the boundary layer thickness for the motion of a Maxwell fluid, induced by a constantly accelerating plate, are established in exact and approximate forms. The corresponding solutions for Newtonian fluids, performing the same motion, are obtained as limiting cases of our solutions. The exact expressions do not show any comparison between the obtained results of Newtonian and Maxwell fluids. The approximate results give a clear comparison of these results. It is noticed that in comparison with Newtonian fluids, the power due to the shear stress at the wall, dissipation, rate of change of kinetic energy and the boundary layer thickness of Maxwell fluid decrease.